John Scott 08/06/2023 at 2:55 am https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0 https://t.me/+QffFC3D5VjBlM2I0/ Reply
Jean Luc Baudoin 08/06/2023 at 2:55 am The index gap being 103 – 49 = 54 ≡ 2 (mod 4) the expression vanishes. Reply
Jonathan Burros 08/06/2023 at 2:55 am (i^48)(i) +( i^102)(i) = ((-1)^24)^2 (i) +((-1)^51) (i) = i – i = 0 Reply
i⁴⁹ + i¹⁰³
i(i²)²⁴ + i(i²)⁵¹
i(-1)²⁴ + i(-1)⁵¹
i – i =0
i⁴⁹ + i103
i+ i³
i-i
0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0
https://t.me/+QffFC3D5VjBlM2I0/
2
2i
0
0
2i
0
0
0
0
0
0
=i+i^3=0
The index gap being 103 – 49 = 54 ≡ 2 (mod 4) the expression vanishes.
0
2i where i, imaginary
-2i
i(i^4)^12 + i^3(i^4)^25 = i – i = 0
(i^48)(i) +( i^102)(i)
= ((-1)^24)^2 (i) +((-1)^51) (i)
= i – i
= 0
= i(i^2)^24 + i(i^2)^51
= i(-1)^24 + i(-1)^51
= i + i(-1)
= 0